منابع مشابه
A Stochastic Approximation Method
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملA Stochastic Approximation Method for Reachability Computations
We develop a grid-based method for estimating the probability that the trajectories of a given stochastic system will eventually enter a certain target set during a –possibly infinite– look-ahead time horizon. The distinguishing feature of the proposed methodology is that it rests on the approximation of the solution to stochastic differential equations by using Markov chains. From an algorithm...
متن کاملDynamic Stochastic Approximation for Multi-stage Stochastic Optimization
In this paper, we consider multi-stage stochastic optimization problems with convex objectives and conic constraints at each stage. We present a new stochastic first-order method, namely the dynamic stochastic approximation (DSA) algorithm, for solving these types of stochastic optimization problems. We show that DSA can achieve an optimal O(1/ǫ4) rate of convergence in terms of the total numbe...
متن کاملEfficiency of the Stochastic Approximation Method*
The practical aspect of the stochastic approximation method (SA) is studied. Specifically, we investigated the efficiency depending on the coefficients that generate the step length in optimization algorithm, as well as the efficiency depending on the type and the level of the corresponding noise. Efficiency is measured by the mean values of the objective function at the final estimates of the ...
متن کاملPolynomial approximation method for stochastic programming
POLYNOMIAL APPROXIMATION METHOD FOR STOCHASTIC PROGRAMMING Dongxue Ma October 2nd, 2009 Two stage stochastic programming is an important part in the whole area of stochastic programming, and is widely spread in multiple disciplines, such as financial management, risk management, and logistics. The two stage stochastic programming is a natural extension of linear programming by incorporating unc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Mathematical Statistics
سال: 1965
ISSN: 0003-4851
DOI: 10.1214/aoms/1177699797